Working with treasury and finance teams across the globe, we see a large number of cash forecasting processes with varying degrees of automation. Some are fully automated, “no touch” processes, some deploy automation at key steps in the process, while others are fully manual, labour intensive processes. In this post we look at what forecasting automation is, what the benefits of automation are, which components of the process can be automated, and how cash forecasting automation can be achieved.
There are many workflows, data inputs, and communications and reporting exercises that make up a cash forecasting process. Cash forecasting automation may refer to automating the process in its entirety or may refer to the automation of the constituent parts of this process.
As mentioned above, the extent to which the process is automated, and indeed how the process is automated, fall on a spectrum. Some parts of the cash forecasting process may be automated with Machine Learning (ML) or Artificial Intelligence (AI) technologies, or those technologies may be used at the end of the process and deployed more on the output. This post focuses on how cash flow forecasting processes can be automated without ML/AI. For further reading on how ML/AI can be used in cash forecasting, we have written an article discussing how ML/AI methods of forecasting compare with traditional statistical ones, which explores the topic in further detail.
Automating the cash flow forecasting process brings many benefits, namely:
The result of these benefits is that automation doesn’t just mean fewer mistakes, when applied well, it leads to a roundly improved, best practice forecasting process.
Typically, there are two sets of data collected in a cash forecasting process, the forecast data and the actual data. Automating the input of this data to the process encompasses both the collection and classification of this data. This be achieved by either algorithmic or rules-based classification.
Forecast cash flow data
Actual cash flow data
Without automation a cashflow forecasting process for head office teams can involve significant manual work, therefore automating key workflows can alleviate much of this administrative burden.
Input workflows
Output workflows
As discussed above, a cash forecasting process can be automated in its entirety, or it can be separated into its constituent parts, which can each be automated in isolation. In either case, automation is difficult if not impossible to achieve without the use of specialist cash flow forecasting software.
If you are setting up a new cash flow forecasting process, please read our Cashflow Forecasting Setup Guide.
If you have any questions, or would like any advice on how to automate any or all of the elements of your cash forecasting process, please do not hesitate to contact us.
Working with treasury and finance teams across the globe, we see a large number of cash forecasting processes with varying degrees of automation. Some are fully automated, “no touch” processes, some deploy automation at key steps in the process, while others are fully manual, labour intensive processes. In this post we look at what forecasting automation is, what the benefits of automation are, which components of the process can be automated, and how cash forecasting automation can be achieved.
There are many workflows, data inputs, and communications and reporting exercises that make up a cash forecasting process. Cash forecasting automation may refer to automating the process in its entirety or may refer to the automation of the constituent parts of this process.
As mentioned above, the extent to which the process is automated, and indeed how the process is automated, fall on a spectrum. Some parts of the cash forecasting process may be automated with Machine Learning (ML) or Artificial Intelligence (AI) technologies, or those technologies may be used at the end of the process and deployed more on the output. This post focuses on how cash flow forecasting processes can be automated without ML/AI. For further reading on how ML/AI can be used in cash forecasting, we have written an article discussing how ML/AI methods of forecasting compare with traditional statistical ones, which explores the topic in further detail.
Automating the cash flow forecasting process brings many benefits, namely:
The result of these benefits is that automation doesn’t just mean fewer mistakes, when applied well, it leads to a roundly improved, best practice forecasting process.
Typically, there are two sets of data collected in a cash forecasting process, the forecast data and the actual data. Automating the input of this data to the process encompasses both the collection and classification of this data. This be achieved by either algorithmic or rules-based classification.
Forecast cash flow data
Actual cash flow data
Without automation a cashflow forecasting process for head office teams can involve significant manual work, therefore automating key workflows can alleviate much of this administrative burden.
Input workflows
Output workflows
As discussed above, a cash forecasting process can be automated in its entirety, or it can be separated into its constituent parts, which can each be automated in isolation. In either case, automation is difficult if not impossible to achieve without the use of specialist cash flow forecasting software.
If you are setting up a new cash flow forecasting process, please read our Cashflow Forecasting Setup Guide.
If you have any questions, or would like any advice on how to automate any or all of the elements of your cash forecasting process, please do not hesitate to contact us.
Nehmen Sie noch heute Kontakt mit unterstützenden Experten, umfassenden Lösungen und ungenutzten Möglichkeiten auf.